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We have rezpor‘ted1 that treatment of the quadricyclane I with catalytic amounts of

Rh2(norbomadiene)2012 or Rhe((’:o)hcl2 in CHCl3 gives the norbornadiene II as the sole reaction

product. However, Nelson, Gillespie and Hin22 have shown that treatment of I with catalytic

2012 affords both the cyclopentadienylallene III, as well as the nor-

bornadiene II (30-60% and 10-20%, respectively).
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In view of these results we therefore decided to investigate the catalyst dependency of the
isomerization of the quadricyclanes in greater detail. For that purpose the quadricyclane IV

was chosen as substrate and Rha(norbornadiene)ECl RhQ(CO)uCla, Pd(¢CN)2Cl2 and AgCl0, as

2.‘
catalysts.

Treatment of IV in aprotic solvents -CHCl_ and CH3N02— with these catalysts leads

>
in all cases to the norbornadiene V as the sole product, whereas in a protic solvent -CHBOH-
the various catalysts lead to different productsB: Rh2 (CO)hCl2 and Rh2 (norbornadiene) 2012 give
V and AgClO,_I_ gives the isomeric mixture VI.h

From the nature of the products formed in CH_OH one may assume that in the case of
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AgCth an ionic mechanism obtains, in contrast to the situation with ha(CO)hCl2 and Rh2
(norbomadiene)2012. In order to understand better this divergent behaviour, we have measured

the second order rate constants (See Table).

Table. Second order rate constantsa) of the reaction: IV — V or VI

[IV]: 0,6 M [catalyst]l: 0.03 M Temperature: 60°C
Catalyst Solvent 1O2k2 (M-1s'1)
. b)

Rh, (norbornadiene) L1, CDCl_j 2,8
ha(co)hm2 CDClB 4,3
P (§ON),C1, coe, 4,0
Rh,,(C0),C1, CDNo, 43

Pd (fCN) C1,, CDNO, 6,5
agc10,°) oo, 0,3
Rh, (C0),CL, €D,0D 3,0
AgCthc) CD,0D 3,8

a) kz-values for Rh(I) catalyzed reactions are camposite second-order rate constants (see text).

b) this value differs by a factor of about 2 from the one previously x-eported,1 which is due to
the fact that the present ka—values were determined as initial rate constants.

c) {catalyst]: 0,06 M.

From the table one observes that in chloroform the second-order rate constant of the Pd(II)
catalyzed isomerization is about the same as that of the Rh(I) catalyzed isamerizations. This

is difficult to reconcile with the model of Halpern, in which the axidative addition of a
quadricyclane molecule to the metal is rate determining5 , because then one would expect a lower
k2-value for the PA(II) catalyzed isomerizations.6 A study of the initial rates of conversion

as & function of the concentration of IV, has revealed an interesting difference between the PA(II)

catalysis on one hand, and the Rh(I) catalysis on the other hand. See Figure 1.
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Figure 1. Initial rates of conversion IV — V as a function of [IV]; temp, 60°C; solvent CD013.

For the PA(II) catalyzed isomerization a linear relationship is found throughout the measured
concentration range (up to about 3 M), This means that one is dealing with a real second-order

catalytic rate law, However, in the case of Rh(I) a deviation from linearity is observed at

higher concentrations of IV. The observed relationship adheres to eq. 1, which implies the
T

existence of a fast pre-equilibrium,

~4(Iv] _ kK[IV][Rn(I))} ) K = pre-equilibrium constant

dt K[Iv] + 1 k

rate-determing step constant

The pre-equilibrium constant was determined by the method of Lineweaver and Burke' and was found
to be 0.32 M'1 at 60°C. Consistent with the model of a pre-equilibrium is the visual observation
that immediately after mixing the chloroform solutions of yellow Rh2 (norbornadiene ) 2012 with
colourless substrate IV a deep red brown colour developes (without any observable isomerization
of IV). At the end of the iscmerization the colour is aéain yellow. A consequence of this pre-
equilibrium is that the ke-values of the Rh(I) catalyzed iscmerizations in the Table (at least
for ha(norbomadiene) 2012 in CDC13) are not real second-order rate constants, but kK-values.
It is not clear at this moment what the precise nature of the pre-equilibrium is;

possibly it involves an interaction of one cyclopropil ring with the Rh(I) atom, so that the Rh(I)

atan has became coordinately saturated.6’9
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In the case of PAd(II) catalysis there is no such pre-equilibrium and the following scheme is

suggested:

With Ag(I) catalysis the reaction scheme

E L E
Pd (H) v —i ~———®  products
£ Pd(1v) E

10,11 (on basis of product formed in CHBOH) can be re-

presented as follows:

E

E E
Ag(l)'l' '—k"—> M E ——>> products

Ag(in) £ Aqll)

We are continuing our study in order to investigate the role of the solvent and the ligands

attached to the rhodium atom.
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